Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Mol Brain ; 17(1): 16, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475840

RESUMO

Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais , Deficiência Intelectual , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Camundongos , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cognição , Aprendizagem em Labirinto , Mudança Social , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
3.
Neuropsychopharmacology ; 49(4): 720-730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38049583

RESUMO

One of the critical unmet medical needs in schizophrenia is the treatment for cognitive deficits. However, the neural circuit mechanisms of them remain unresolved. Previous studies utilizing animal models of schizophrenia did not consider the fact that patients with schizophrenia generally cannot discontinue antipsychotic medication due to the high risk of relapse. Here, we used multi-dimensional approaches, including histological analysis of the prelimbic cortex (PL), LC-MS/MS-based in vivo dopamine D2 receptor occupancy analysis for antipsychotics, in vivo calcium imaging, and behavioral analyses of mice using chemogenetics to investigate neural mechanisms and potential therapeutic strategies for working memory deficit in a chronic phencyclidine (PCP) mouse model of schizophrenia. Chronic PCP administration led to alterations in excitatory and inhibitory synapses, specifically in dendritic spines of pyramidal neurons, vesicular glutamate transporter 1 (VGLUT1) positive terminals, and parvalbumin (PV) positive GABAergic interneurons located in layer 2-3 of the PL. Continuous administration of olanzapine, which achieved a sustained therapeutic window of dopamine D2 receptor occupancy (60-80%) in the striatum, did not ameliorate these synaptic abnormalities and working memory deficit in the chronic PCP-treated mice. We demonstrated that chemogenetic activation of PV neurons in the PL, as confirmed by in vivo calcium imaging, ameliorated working memory deficit in this model even under clinically comparable olanzapine treatment which by itself inhibited only PCP-induced psychomotor hyperactivity. Our study suggests that targeting prefrontal PV neurons could be a promising therapeutic intervention for cognitive deficits in schizophrenia in combination with antipsychotic medication.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Humanos , Camundongos , Antipsicóticos/uso terapêutico , Cálcio , Cromatografia Líquida , Modelos Animais de Doenças , Interneurônios/metabolismo , Transtornos da Memória/tratamento farmacológico , Olanzapina/efeitos adversos , Parvalbuminas/metabolismo , Fenciclidina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2 , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Espectrometria de Massas em Tandem
4.
Sci Rep ; 13(1): 22027, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086879

RESUMO

Brain-enriched guanylate kinase-associated protein (BEGAIN) is highly enriched in the post-synaptic density (PSD) fraction and was identified in our previous study as a protein associated with neuropathic pain in the spinal dorsal horn. PSD protein complexes containing N-methyl-D-aspartate receptors are known to be involved in neuropathic pain. Since these PSD proteins also participate in learning and memory, BEGAIN is also expected to play a crucial role in this behavior. To verify this, we first examined the distribution of BEGAIN in the brain. We found that BEGAIN was widely distributed in the brain and highly expressed in the dendritic regions of the hippocampus. Moreover, we found that BEGAIN was concentrated in the PSD fraction of the hippocampus. Furthermore, immunoelectron microscopy confirmed that BEGAIN was localized at the asymmetric synapses. Behavioral tests were performed using BEGAIN-knockout (KO) mice to determine the contribution of BEGAIN toward learning and memory. Spatial reference memory and reversal learning in the Barns circular maze test along with contextual fear and cued fear memory in the contextual and cued fear conditioning test were significantly impaired in BEGAIN-KO mice compared to with those in wild-type mice. Thus, this study reveals that BEGAIN is a component of the post-synaptic compartment of excitatory synapses involved in learning and memory.


Assuntos
Neuralgia , Densidade Pós-Sináptica , Camundongos , Animais , Densidade Pós-Sináptica/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Aprendizagem em Labirinto , Guanilato Quinases/metabolismo , Neuralgia/metabolismo
5.
iScience ; 26(12): 108379, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025769

RESUMO

Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.

6.
Sci Rep ; 13(1): 18196, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875516

RESUMO

The common marmoset (Callithrix jacchus) has attracted attention as a valuable primate model for the analysis of human diseases. Despite the potential for primate genetic modification, however, its widespread lab usage has been limited due to the requirement for a large number of eggs. To make up for traditional oocyte retrieval methods such as hormone administration and surgical techniques, we carried out an alternative approach by utilizing ovarian tissue from deceased marmosets that had been disposed of. This ovarian tissue contains oocytes and can be used as a valuable source of follicles and oocytes. In this approach, the ovarian tissue sections were transplanted under the renal capsules of immunodeficient mice first. Subsequent steps consist of development of follicles by hormone administrations, induction of oocyte maturation and fertilization, and culture of the embryo. This method was first established with rat ovaries, then applied to marmoset ovaries, ultimately resulting in the successful acquisition of the late-stage marmoset embryos. This approach has the potential to contribute to advancements in genetic modification research and disease modeling through the use of primate models, promoting biotechnology with non-human primates and the 3Rs principle in animal experimentation.


Assuntos
Callithrix , Ovário , Feminino , Animais , Camundongos , Fertilização In Vitro , Oócitos , Callitrichinae , Hormônios
7.
Front Aging Neurosci ; 15: 1211067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455930

RESUMO

Background: Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods: We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results: Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion: These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.

8.
Biomolecules ; 13(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37238654

RESUMO

As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate.


Assuntos
Ácido Glutâmico , Tubulina (Proteína) , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
9.
Mol Brain ; 16(1): 44, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217969

RESUMO

Glycine receptors (GlyRs) are ligand-gated chloride channels comprising alpha (α1-4) and ß subunits. The GlyR subunits play major roles in the mammalian central nervous system, ranging from regulating simple sensory information to modulating higher-order brain function. Unlike the other GlyR subunits, GlyR α4 receives relatively little attention because the human ortholog lacks a transmembrane domain and is thus considered a pseudogene. A recent genetic study reported that the GLRA4 pseudogene locus on the X chromosome is potentially involved in cognitive impairment, motor delay and craniofacial anomalies in humans. The physiologic roles of GlyR α4 in mammal behavior and its involvement in disease, however, are not known. Here we examined the temporal and spatial expression profile of GlyR α4 in the mouse brain and subjected Glra4 mutant mice to a comprehensive behavioral analysis to elucidate the role of GlyR α4 in behavior. The GlyR α4 subunit was mainly enriched in the hindbrain and midbrain, and had relatively lower expression in the thalamus, cerebellum, hypothalamus, and olfactory bulb. In addition, expression of the GlyR α4 subunit gradually increased during brain development. Glra4 mutant mice exhibited a decreased amplitude and delayed onset of the startle response compared with wild-type littermates, and increased social interaction in the home cage during the dark period. Glra4 mutants also had a low percentage of entries into open arms in the elevated plus-maze test. Although mice with GlyR α4 deficiency did not show motor and learning abnormalities reported to be associated in human genomics studies, they exhibited behavioral changes in startle response and social and anxiety-like behavior. Our data clarify the spatiotemporal expression pattern of the GlyR α4 subunit and suggest that glycinergic signaling modulates social, startle, and anxiety-like behaviors in mice.


Assuntos
Sistema Nervoso Central , Receptores de Glicina , Camundongos , Humanos , Animais , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sistema Nervoso Central/metabolismo , Mamíferos/metabolismo
10.
Biochem Biophys Res Commun ; 658: 27-35, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37018886

RESUMO

The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.


Assuntos
Adipócitos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Linhagem da Célula , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Gordura Subcutânea/metabolismo
11.
iScience ; 26(3): 106229, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876121

RESUMO

The prion-like domain (PrLD) is a class of intrinsically disordered regions. Although its propensity to form condensates has been studied in the context of neurodegenerative diseases, the physiological role of PrLD remains unclear. Here, we investigated the role of PrLD in the RNA-binding protein NFAR2, generated by a splicing variant of the Ilf3 gene. Removal of the PrLD in mice did not impair the function of NFAR2 required for survival, but did affect the responses to chronic water immersion and restraint stress (WIRS). The PrLD was required for WIRS-sensitive nuclear localization of NFAR2 and WIRS-induced changes in mRNA expression and translation in the amygdala, a fear-related brain region. Consistently, the PrLD conferred resistance to WIRS in fear-associated memory formation. Our study provides insights into the PrLD-dependent role of NFAR2 for chronic stress adaptation in the brain.

12.
Biochem J ; 479(11): 1127-1145, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35574701

RESUMO

Voltage-sensing proteins generally consist of voltage-sensor domains and pore-gate domains, forming the voltage-gated ion channels. However, there are several unconventional voltage-sensor proteins that lack pore-gate domains, conferring them unique voltage-sensing machinery. TMEM266, which is expressed in cerebellum granule cells, is one of the interesting voltage-sensing proteins that has a putative intracellular coiled-coil and a functionally unidentified cytosolic region instead of a pore-gate domain. Here, we approached the molecular function of TMEM266 by performing co-immunoprecipitation experiments. We unexpectedly discovered that TMEM266 proteins natively interact with the novel short form splice variants that only have voltage-sensor domains and putative cytosolic coiled-coil region in cerebellum. The crystal structure of coiled-coil region of TMEM266 suggested that these coiled-coil regions play significant roles in forming homodimers. In vitro expression experiments supported the idea that short form TMEM266 (sTMEM266) or full length TMEM266 (fTMEM266) form homodimers. We also performed proximity labeling mass spectrometry analysis for fTMEM266 and sTMEM266 using Neuro-2A, neuroblastoma cells, and fTMEM266 showed more interacting molecules than sTMEM266, suggesting that the C-terminal cytosolic region in fTMEM266 binds to various targets. Finally, TMEM266-deficient animals showed the moderate abnormality in open-field test. The present study provides clues about the novel voltage-sensing mechanism mediated by TMEM266.


Assuntos
Cerebelo , Canais Iônicos , Animais , Canais Iônicos/metabolismo , Camundongos
13.
Neuropsychopharmacology ; 47(12): 2150-2159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35618841

RESUMO

Long-lasting fear-related disorders depend on the excessive retention of traumatic fear memory. We previously showed that the palmitoylation-dependent removal of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors prevents hyperexcitation-based epileptic seizures and that AMPA receptor palmitoylation maintains neural network stability. In this study, AMPA receptor subunit GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice were subjected to comprehensive behavioral battery tests to further examine whether the mutation causes other neuropsychiatric disease-like symptoms. The behavioral analyses revealed that palmitoylation-deficiency in GluA1 is responsible for characteristic prolonged contextual fear memory formation, whereas GluA1C811S mice showed no impairment of anxiety-like behaviors at the basal state. In addition, fear generalization gradually increased in these mutant mice without affecting their cued fear. Furthermore, fear extinction training by repeated exposure of mice to conditioned stimuli had little effect on GluA1C811S mice, which is in line with augmentation of synaptic transmission in pyramidal neurons in the basolateral amygdala. In contrast, locomotion, sociability, depression-related behaviors, and spatial learning and memory were unaffected by the GluA1 non-palmitoylation mutation. These results indicate that impairment of AMPA receptor palmitoylation specifically causes posttraumatic stress disorder (PTSD)-like symptoms.


Assuntos
Medo , Receptores de AMPA , Animais , Extinção Psicológica , Medo/fisiologia , Camundongos , Propionatos , Receptores de AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
14.
J Neurochem ; 161(2): 129-145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233765

RESUMO

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Assuntos
Fenilcetonúrias , Animais , /metabolismo , Di-Hidropteridina Redutase , Medo , Humanos , Camundongos , Fenilalanina , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo
15.
Ultrasound Med Biol ; 47(11): 3301-3309, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34446333

RESUMO

Non-invasive monitoring of temperature elevations inside tumor tissue is imperative for the oncological thermotherapy known as hyperthermia. In the present study, two cancer patients, one with a developing right renal cell carcinoma and the other with pseudomyxoma peritonei, underwent hyperthermia. The two patients were irradiated with radiofrequency current for 40 min during hyperthermia. We report the results of our clinical trial study in which the temperature increases inside the tumor tissues of patients with right renal cell carcinoma and pseudomyxoma peritonei induced by radiofrequency current irradiation for 40 min could be detected by statistical analysis of ultrasonic scattered echoes. The Nakagami shape parameter m varies depending on the temperature of the medium. We calculated the Nakagami shape parameter m by statistical analysis of the ultrasonic echoes scattered from the tumor tissues. The temperature elevations inside the tumor tissues were expressed as increases in brightness on 2-D hot-scale maps of the specific parameter αmod, indicating the absolute values of the percentage changes in m values. In the αmod map for each tumor tissue, the brightness clearly increased with treatment time. In quantitative analysis, the mean values of αmod were calculated. The mean value of αmod for the right renal cell carcinoma increased to 1.35 dB with increasing treatment time, and the mean value of αmod for pseudomyxoma peritonei increased to 1.74 with treatment time. The increase in both αmod brightness and the mean value of αmod implied temperature elevations inside the tumor tissues induced by the radiofrequency current; thus, the acoustic method is promising for monitoring temperature elevations inside tumor tissues during hyperthermia.


Assuntos
Hipertermia Induzida , Ultrassom , Humanos , Temperatura
16.
iScience ; 24(7): 102758, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355142

RESUMO

Derlin family members (Derlins) are primarily known as components of the endoplasmic reticulum-associated degradation pathway that eliminates misfolded proteins. Here we report a function of Derlins in the brain development. Deletion of Derlin-1 or Derlin-2 in the central nervous system of mice impaired postnatal brain development, particularly of the cerebellum and striatum, and induced motor control deficits. Derlin-1 or Derlin-2 deficiency reduced neurite outgrowth in vitro and in vivo and surprisingly also inhibited sterol regulatory element binding protein 2 (SREBP-2)-mediated brain cholesterol biosynthesis. In addition, reduced neurite outgrowth due to Derlin-1 deficiency was rescued by SREBP-2 pathway activation. Overall, our findings demonstrate that Derlins sustain brain cholesterol biosynthesis, which is essential for appropriate postnatal brain development and function.

17.
Mol Brain ; 14(1): 61, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785025

RESUMO

The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Assuntos
Ansiedade/genética , Cromossomos Humanos Par 15/genética , Hipercinese/genética , Canais de Cátion TRPM/genética , Animais , Monoaminas Biogênicas/análise , Química Encefálica , Comportamento Exploratório , Estudos de Associação Genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Teste de Campo Aberto , Reflexo de Sobressalto , Teste de Desempenho do Rota-Rod , Deleção de Sequência , Interação Social , Memória Espacial , Natação , Canais de Cátion TRPM/deficiência , Transtornos da Visão/genética
18.
Nat Commun ; 12(1): 1848, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758193

RESUMO

Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sequência de Aminoácidos , Animais , Transtorno do Espectro Autista/metabolismo , Escala de Avaliação Comportamental , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Domínios Proteicos , Processamento de Proteína , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Recombinantes , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Comportamento Social , Sinapses/genética
19.
J Neurochem ; 157(3): 624-641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33404063

RESUMO

The properties of microglia largely differ depending on aging as well as on brain regions. However, there are few studies that investigated the functional importance of such heterogeneous properties of microglia at the molecular level. Voltage-gated proton channel, Hv1/VSOP, could be one of the candidates which confers functional heterogeneity among microglia since it regulates brain oxidative stress in age-dependent manner. In this study, we found that Hv1/VSOP shows brain region-dependent heterogeneity of gene expression with the highest level in the striatum. We studied the importance of Hv1/VSOP in two different brain regions, the cerebral cortex and striatum, and examined their relationship with aging (using mice of different ages). In the cortex, we observed the age-dependent impact of Hv1/VSOP on oxidative stress, microglial morphology, and gene expression profile. On the other hand, we found that the age-dependent significance of Hv1/VSOP was less obvious in the striatum than the cortex. Finally, we performed a battery of behavioral experiments on Hv1/VSOP-deficient mice both at young and aged stages to examine the effect of aging on Hv1/VSOP function. Hv1/VSOP-deficient mice specifically showed a marked difference in behavior in light/dark transition test only at aged stages, indicating that anxiety state is altered in aged Hv1/VSOP mice. This study suggests that a combination of brain region heterogeneity and animal aging underscores the functional importance of Hv1/VSOP in microglia.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Química Encefálica/fisiologia , Canais Iônicos/metabolismo , Envelhecimento/psicologia , Animais , Ansiedade/psicologia , Comportamento Animal , Córtex Cerebral/metabolismo , Biologia Computacional , Regulação da Expressão Gênica , Canais Iônicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neostriado/metabolismo , Carbonilação Proteica , Transcriptoma
20.
Angiogenesis ; 24(1): 35-46, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918673

RESUMO

Blood-brain barrier (BBB) dysfunction underlies the pathogenesis of many neurological diseases. Platelet-derived growth factor receptor-alpha (PDGFRα) induces hemorrhagic transformation (HT) downstream of tissue plasminogen activator in thrombolytic therapy of acute stroke. Thus, PDGFs are attractive therapeutic targets for BBB dysfunction. In the present study, we examined the role of PDGF signaling in the process of tissue remodeling after middle cerebral arterial occlusion (MCAO) in mice. Firstly, we found that imatinib increased lesion size after permanent MCAO in wild-type mice. Moreover, imatinib-induced HT only when administrated in the subacute phase of MCAO, but not in the acute phase. Secondly, we generated genetically mutated mice (C-KO mice) that showed decreased expression of perivascular PDGFRα. Additionally, transient MCAO experiments were performed in these mice. We found that the ischemic lesion size was not affected; however, the recruitment of PDGFRα/type I collagen-expressing perivascular cells was significantly downregulated, and HT and IgG leakage was augmented only in the subacute phase of stroke in C-KO mice. In both experiments, we found that the expression of tight junction proteins and PDGFRß-expressing pericyte coverage was not significantly affected in imatinib-treated mice and in C-KO mice. The specific implication of PDGFRα signaling was suggestive of protective effects against BBB dysfunction during the subacute phase of stroke. Vascular TGF-ß1 expression was downregulated in both imatinib-treated and C-KO mice, along with sustained levels of MMP9. Therefore, PDGFRα effects may be mediated by TGF-ß1 which exerts potent protective effects in the BBB.


Assuntos
Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/fisiopatologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Acidente Vascular Cerebral/complicações , Animais , Colágeno Tipo I/metabolismo , Hemorragia/patologia , Mesilato de Imatinib , Imunoglobulina G/metabolismo , Infarto da Artéria Cerebral Média/complicações , AVC Isquêmico/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...